
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2011; 85:1390–1414
Published online 1 September 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nme.3022

Coupling heat conduction and water–steam flow in a saturated
porous medium

M. Muhieddine1,2,∗,†, É. Canot1, R. March2 and R. Delannay3

1IRISA, Campus de Beaulieu, 35042 Rennes, France
2Archéosciences, UMR 6566, Campus de Beaulieu, 35042 Rennes, France

3IPR, UMR 6251, Campus de Beaulieu, 35042 Rennes, France

SUMMARY

This paper is devoted to the simulation of water forced evaporation in a porous saturated medium in a 3D-
axisymmetric domain by resolution of partial differential algebraic equations (PDAE) that are encountered
in different engineering applications. The goal of this paper is an attempt to present effective realizations,
in order to determine the minimal duration of burning for prehistoric occupations. This multidisciplinary
work includes scientists in Mathematics, Physics and Archaeology. The model proposed here couples
the heat conduction in a water saturated soil with the water steam flow in the medium. We propose
an efficient and robust global numerical method, based on a method of lines and differential algebraic
equations (DAE) solvers, combined with a Newton method using a powerful sparse linear solver. After a
brief overview of classes for numerical techniques applied for moving boundary problems, the Apparent
Heat Capacity method (AHC) is used, and in order to validate our codes, a comparison with experiments
is done. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Heat flow accompanied by a phase change occurs in many important practical problems. In
particular, the heat diffusion in the ground saturated by water have pressed upon the attention to
develop new methods for more precise representative simulations. Actually, the aim of this work
is to present the applied mathematics used to study prehistoric fires. The goal is to determine
the minimal duration of burning for the archaeological hearths in order to understand the ancient
human behaviors related to the use of fire. In fact, the minimal duration of burning gives us an idea
if the fire was used for cooking, to drive away the animals, etc. The idea is to apply a numerical
model to calculate the heat conduction in porous soils subjected to intense heat from above in order
to determine their minimal duration of burning. This particular geometry involves that the heat
prevents the usual behavior of fluid in the ground, because the vapor ascends to the heated surfaces.

Subsequently, the mathematical model delineating our problems is described by a coupled
system of moving boundary problems with phase changes and the convection phenomenon under
a downward facing heated surface [1]. This work is of importance due to the inherent difficulties
associated with the non-linearity of the interface conditions, the unknown locations of the moving
boundaries (liquid/vapor interface) and the coupling with the non-linear convection problem.
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It should be mentioned that this problem has a wide application in many engineering fields, like
the liquid–vapor phase change in an enclosed cavity. Indeed, water substance plays a very important
role in science and industry. Reliable information for equilibrium thermodynamic and transport
properties of water and steam (water substance) are mostly needed for engineering applications
where heat transfer analysis is involved. In view of these facts, this paper presents a review of
progress made in the past few decades on the formulation and the resolution of thermal conduction
with phase-change phenomenon coupled with water steam flow.

Over the years, a number of related computational works have employed various techniques
in the analysis of phase-change problems. Several important theoretical results on the existence,
the uniqueness and the properties of classical solutions can be found [2, 3], but most of analytical
solutions are for 1-D geometries with very particular boundary conditions [4, 5], and cannot be
extended to multidimensional problems [6, 7]. Thus, many numerical schemes have been proposed
to study transient heat conduction problems with phase change in one, two and three dimensions,
but two schemes are predominant in the numerical analysis; the first one is referred to as the
‘front-tracking method’, in which the position of the moving front is determined at each time step
[8], and must always correspond to a node or edges mesh. The use of this numerical method can
usually eliminate the oscillations found by using the fixed grid method [9, 10], and allows for
more precise solutions. These methods are poorly suited to multi-dimensional problems due to the
implementation difficulties and the large computational cost.

The second scheme formulates the problem in such a way that the conditions on the moving
phase front may be absorbed into new equations, and the problem is solved without explicit
reference to the position of the internal boundary. This position is determined a posteriori when
the solution is complete, using the isotherms at 100◦C. Such a reformulation is based on the use
of the heat enthalpy concept [9, 11–13]. The major problem with these schemes is the presence of
oscillations in the solution. In addition, these schemes often require the use of algorithms to adjust
the solution in order not to miss the absorption or the release of latent heat. The major advantage
of these methods is that they are easily applicable to the phase-change problems.

Other publications related to the natural convection for better understanding of transport
phenomena in geothermal energy systems can be found in [4, 14]. This problem is a real challenge
from both modeling and computational standpoints. It has received much attention in the recent
past and is still the subject of intensive ongoing research.

In fact, simulations of liquid–vapor flows coupled with heat flow accompanied by a phase
change with realistic physical properties and large density ratio between the phases (≈1000) are
still few in the literature. This is due to various modeling and numerical difficulties. Also, the
numerical method for such problems needs to deal with incompressible (liquid) and compressible
(vapor) flows in the same computational domain. This difficulty can be overcome using different
computational sub-domains for the two-phases, but this approach is limited to small deformations
of the interface.

The model developed in the present paper uses the AHC method to describe the phase-change
phenomenon of the fluid (water) in the ground. The physical properties of the fluid (water/vapor)
used in the calculation are temperature dependent; therefore, the problem is highly non-linear.
Also, the compressibility of the created vapor coupled with the phase-change effects is significant
too, yielding much more complex dynamics, that is why it is interesting to develop a numerical
methodology to handle and solve this problem. Otherwise, a systematic study of the evaporation
in the soil will be based on an experimental methodology definitely more general that allows the
settling of innovative designs to facilitate the approach modeling and its validation.

We present here a unified framework for many numerical methods and we introduce a new
formulation of a global approach using the power of differential algebraic equations (DAE) solvers.
In the diffusion model, we assume that the porous medium is saturated by water. By adding the flow
model, we get a coupled set of PDAE. There are various ways to discretize the diffusion operator,
but we restrict this study to Eulerian approaches, for example by finite differences, finite-volume or
finite element methods. Moreover, we consider a method of lines where space is first discretized,
and the resulting semi-discrete system is then solved by an ordinary differential equation (ODE)
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(or DAE) solver depending on if we are dealing with coupled system or just the diffusion part.
This excludes methods combining time and space discretizations. We also assume that the same
discrete space is used for advection and diffusion, so that we get a discrete advection–diffusion
equation. With these assumptions, the model is transformed into a set of DAE of finite dimension,
where unknowns are in the discrete space.

Most of the used approaches in the literature differ by the numerical scheme used to discretize
in time and by the numerical method used to solve the non-linear equations. Our approach uses an
implicit scheme and a Newton method embedded in a DAE solver; the objective is to rely on the
solver for controlling the time step, the order of the scheme, the updates of the Jacobian and the
convergence of Newton iterations. In order to improve efficiency, we use sparse Jacobian matrix
and sparse linear solver.

2. MATHEMATICAL FORMULATION

Consider a horizontal surface embedded in a water saturated porous medium as shown in Figure 1.
The temperature of the surface facing downward is TC , which is greater than the temperature of
the medium T∞ at an infinite depth.

To describe the evaporation of water in a soil, whether natural or forced, which involves very
complex mechanisms we consider basic phenomena and to simplify the model, we adopt the
following assumptions:

1. The solid phase (porous matrix) is composed of a single constituent that does not react with
other constituents and does not dissolve. Its properties may vary in space.

2. Deformations of the solid phase are neglected.
3. The moisture is present mainly in the form of free water and does not react chemically with

other constituents.
4. The dry front appears immediately at the open surface when the heating begins.
5. The phase-change temperature Tv =100◦C (this is justified a posteriori because pressure

variations are very small).

Also, there is thermal equilibrium between the liquid and vapor phases on the interface of phase
change, which leads to an identical temperature for both phases on this interface.

Combarnous and Bories have derived a two-energy equation model for heat transfer within a
unit volume of a porous medium [15]. For the fluid phase, they gave

div(�f grad Tf)−div[(�C)fV f Tf]= �
�t

[�(�C)fTf]+h(Tf−Ts) (1)

Wet zone

Dry zone

Ground
Fire

Pure Conduction Water Steam Flow

Liquid/Vapor interface

Figure 1. Physical description.
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where Tf and Ts are, respectively, the average of fluid and solid phase temperatures within a unit
volume. Vf is the filtration velocity of Darcy for the fluid phase. The porosity �, defined as the
ratio of the volume of voids to the total volume, is assumed to be constant in both time and
space. Additionally, �f is the effective thermal conductivity tensor for the fluid phase and h is the
interfacial heat transfer coefficient per unit volume (Combarnous and Bories [15] describe h as
the ‘coefficient de transfert par unité de volume de milieu’ and give units of W/(cm3◦C)).

Likewise, the differential equation for the solid phase is given by

div(�s grad Ts)= �
�t

[(1−�)(�C)sTs]+h(Ts−Tf) (2)

In addition, �s is the effective thermal conductivity tensor for the solid phases. The overall effective
thermal conductivity of the medium is given by

ke =�f +�s (3)

The effective thermal conductivity tensors �f and �s are used to incorporate the effects of hydrody-
namic dispersion within the fluid phase and the dispersed structure of the porous medium. Neither
the relationship between �f and kf (thermal conductivity of the fluid phase) or �s and ks (thermal
conductivity of the porous matrix medium) is known a priori.

Subsequently, they assumed that the two phases are in local equilibrium, so that the energy
conservation equation is expressed as

(�C)e
�T

�t
+(�C)fVf · �grad T =div(ke �grad T ) (4)

The effective calorific capacity being additive, the effective value (�C)e is then defined by the
following equation:

(�C)e = �(�C)f +(1−�)(�C)s

= ��fCf +(1−�)�sCs (5)

where �s, Cs are constants, whereas �f and Cf are temperature dependents.
On the other hand, when a heated region in the soil reaches Tv, the water presented in the

soil turns into vapor flowing in the ground. To solve analytically or numerically the water steam
flow problem (see Figure 1), we must first derive the differential equations. The obtention of
differential equations requires the integration of conservation equations. First, in order to model
the fluid motion through the porous medium, we use the Darcy flow model formulation presented
by Wooding (1957)

Vf =− K

�f

�grad Pf (6)

where Vf is the filtration velocity of the fluid, K is the permeability (constant in time), �f is the
viscosity of the fluid phase and Pf is the fluid pressure. Furthermore, the continuity equation is
given by

�(��f)

�t
+div(�fVf)=0 (7)

The storage term can be clarified as follows if it is supposed that the porous environment is
incompressible, i.e. if the porosity remains constant:

�(��f)

�t
=�

��f

�t
+�f

��

�t
=�

��f

�t
(8)

The resulting equation obtained by coupling (6), (8), which models the gas flowing in an isotropic
medium, is thus given by

div
(

�grad Pf

)
= ��f

K�f

��f

�t
+ 1

�f

�grad�f · �grad Pf − 1

�f

�grad�f · �grad Pf (9)
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We assume that the water vapor obeys the ideal gas law

Pf

�fTf
=�= ideal gas constant (10)

where Tf must be given in Kelvin.
Observing the phase transition problem for the fluid phase in which the evaporation takes place

at a certain temperature Tv, two boundary conditions have to be specified, the first one for the
edges of the computational domain which prescribes the geometrical form of the problem and the
other one for the boundary between the dry and the wet zone. Let us define the two following
regions: the first region with subscript 1 is saturated (porous matrix+liquid water); initially this
humid region covers the entire domain of study, its temperature is constant and equals T1 =T∞
and �Pf/�x =0. The second region, subscripted by 2, is a porous medium filled with water steam
(we neglect the presence of air in the soil). For this dry region the boundary conditions at the
surface x =0 are: TC =Tfire (temperature at the center of the fire) and Pf = Patm (atmospheric
pressure).

Moreover, at the interface between the two regions, we have the continuity of the temperature

T1 =T2 =Tv (temperature of evaporation) (11)

On the other hand, we have the discontinuity of the heat flux due to the phase change which
writes [

1

(�/kl +(1−�)/ks)

]
�T1

�x
−
[

1

(�/kv +(1−�)/ks)

]
�T2

�x
=�L

��

�t
(12)

where L is the latent heat of the phase change per unit volume and � is the phase-change interface
position. It should be noted that the combination achieved above uses a vertical configuration of
components, which gives an harmonic average.

The mass flow of water steam created by the evaporation is proportional to the displacement
of the interface ��/�t of Equation (12). By the relation (6), we can transform this mass flow into
pressure gradient, which becomes a Neumann boundary condition for P at the interface

�Pf

�x
= �f

K

�l

�v

��

�t
(13)

3. AHC METHOD

To avoid the follow of the interface, the AHC method will be used. In this method, the latent heat is
taken into account by integrating the heat capacity over the temperature [11], and the computational
domain is considered as one region. As the relationship between heat capacity and temperature
in isothermal problems involves sudden changes, the zero-width phase-change interval must be
approximated by a narrow range of phase-change temperatures. The thermodynamic parameters of
the fluid are defined considering the apparent capacity method of [11]. According to this reference,
these parameters may be obtained taking into consideration that the phase change takes place in
a small temperature interval (see Figure 2).

Then, if this interval is �T :

Cf =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Cl, T <Tv − �T

2
Cv +Cl

2
+ �

�T
, Tv − �T

2
�T �Tv + �T

2

Cv, T >Tv + �T

2

(14)
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Figure 2. Physical properties given by Bonacina.

where �= L/�. Similarly, a global new thermal conductivity has to be introduced:

kf =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

kl , T <Tv − �T

2

kl + kv −kl

�T

[
T −

(
Tv − �T

2

)]
, T v− �T

2
�T �Tv + �T

2

kv, T >Tv + �T

2

(15)

The principal advantages of this approach are that (i) temperature T is the primary dependent
variable that derives directly from the solution, and (ii) the use of this method usually reduces
the fluctuations found by using the LHA approach [9]. As we mentioned above, the domain is
considered as one region. A direct evaluation, in fact, can be expected to lead to satisfactory
numerical integrations only if the thermophysical properties versus temperature curves do not
present sharp peaks in the range of interest.

When the temperature approaches the phase-change temperature Tv, the equivalent heat capacity
tends to the shape of Dirac � function and, therefore, cannot be satisfactorily represented across
the peak, by any smooth function. Such extreme problems can be successfully tackled by the
technique proposed here, where a more appropriate averaging process is employed.

To overcome the abrupt change present in the formulations of thermophysical parameters defined
by (14) and (15) (see Figure 2), we proposed to smooth these functions. The numerical solution can
be obtained as the limit of a uniformly convergent sequence of classical solutions to approximating
problems, deduced by smoothing the coefficients (14, 15), following a few general rules: the AHC
formulation allows for a continuous treatment of a system involving phase transfer. If the phase
transition takes place instantaneously at a fixed temperature, then a mathematical function such as

	(T )=
(T −Tv) (16)

is representative of the volumetric fraction of the initial phase (liquid phase). 
 is a step function
whose value is zero when T <Tv and one otherwise. The variation of the initial phase fraction with
temperature is

d	

dT
=�(T −Tv) (17)

in which �(T −Tv) is the Dirac delta function whose value is infinity at the transition temperature,
Tv, but zero at all other temperatures. To alleviate this singularity, the Dirac delta function can be
approximated by the normal distribution function

d	

dT
= (��−1/2)exp[−�2(T −Tv)2] (18)
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Figure 3. Smoothed physical properties.

in which � is chosen to be �=1/
√

2�T and where �T is one-half of the assumed phase-change
interval. Consequently, the integral of Equation (18) yields the error functions approximations for
the initial phase fraction which is water in our case. With the conventional finite volume method,
the initial phase fraction obtained from Equation (18) by integration should be used to avoid the
numerical instabilities arising from the jump in the values of the volumetric fraction of initial
phase from zero to one. The function 	 is obtained by integrating d	/dT over temperature

	(T )= 1
2 (1+ erf(�(T −Tv))) (19)

In our approach we assume for simplicity that the phases are isotropic and homogeneous.
Accordingly, the smoothed coefficients (see Figure 3) of Equations (14) and (15) could be written as

Cf =Cl +(Cv −Cl)	(T )+L
d	

dT
(20)

and

kf =kl +(kv −kl)	(T ) (21)

To avoid the resolution of the problem in two different regions, the same approximations are
used for all physical parameters: this is the key-point of our formulation. Indeed, a new formulation
for the density is given by

�f =�l +(�v −�l)	(T ) (22)

where �l remains constant and �v is calculated using the ideal gas law (10), and Equation (22)
could be written as follows:

�f =�l +
(

P

�T
−�l

)
	(T ) (23)

Also, a new formulation for the viscosity is given by

�f =�l +(�v −�l)	(T ) (24)

where

�l =0.4527(T +40)−1.492

and

�v =122.10−7+4.10−8(T −Tv)

T is given in Celsius degree. These linear approximations of the liquid water and vapor viscosities
are obtained from the Fortran 90 library NBS steam tables (http://people.scs.fsu.edu/∼
burkardt/f_src/steam/steam.html) that computes various physical properties of water,
related to temperature and pressure.
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4. SET OF EQUATIONS

Using the new formulations of physical parameters as given in the previous section, the system of
coupled equations to be solved is written as follows:

(�C)e(T )
�T (x, t)

�t
− K (�C)f(T )

�f(T )
�grad P(x, t) · �grad T (x, t)

−div[ke �grad T (x, t)]=0 in �×(0, tend]

	(T )

T (x, t)�

�P(x, t)

�t
+
[(

P(x, t)

T (x, t)�
−�l

)
d	(T )

dT
− P(x, t)

T 2(x, t)�
	(T )

]
�T (x, t)

�t

+ K�f(T )

��f(T )

(
1

�f(T )
�grad�f(T )− 1

�f(T )
�grad�f(T )

)
�grad P(x, t)

− K�f(T )

��f(T )
div( �grad P(x, t))=0 in �×(0, tend]

T (x,0)=T0(x) in �

T (x, t)=T D(x, t) on �D ×(0, tend]

∇T (x, t).=qN(x, t) on �N ×(0, tend]

P(x,0)= P0(x) in �

P(x, t)= PD(x, t) on �D ×(0, tend]

∇ P(x, t).=sN(x, t) on �N ×(0, tend]

(25)

where � is a bounded domain in Rd (d =1, . . . ,3) with boundary ��=�D ∪�N; T represents
the temperature, P is the pressure variable; � is the density, C is the AHC, � is the viscosity, �
is the porosity, the subscripts e, f and s indicate, respectively, the equivalent parameters of the
medium, the properties of the fluid and the porous matrix properties; ke is the conductivity, it is
assumed to be a diagonal tensor with components in L∞(�) (ke is calculated using the harmonic
mean between kf and ks); K is the permeability;  indicates the outward unit normal vector along
��; T D and qN are, respectively, the Dirichlet and Neumann boundary conditions for the tempera-
ture; PD and sN are, respectively, the Dirichlet and Neumann boundary conditions for the pressure.
It should be emphasized that the thermophysical properties of the fluid are temperature dependent
and the problem is non-linear.

However, with adequate initial and boundary conditions, the problem to be solved (25) may be
written in the vectorial form

�T

�t
= f (t, x,T, P)

�
�T

�t
+�

�P

�t
= g(t, x,T, P)

(26)

where � and � are two variables dependent on 	(T ) (19) and d	/dT (18).

5. NUMERICAL METHODS

The first equation of the system (26) is an ordinary differential one. On the other hand, the second
equation is a differential algebraic one because 	(T )=0 and/or d	/dT =0 for T <Tv; hence, we
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have a DAE. The numerical resolution of non-linear systems with partial differential algebraic
equations (PDAE) is very complicated. Concerning the heat diffusion and the water steam flow
in saturated porous media, systems could have very large size and present high non-linearity.
These systems are difficult to solve in spite of the great diversity of existing possible approaches,
because extension to DAE systems stresses the numerical method. For this reason, there is a lack
of methods that could deal with all types of systems of PDAE.

Among the large variety of existing approaches used to solve PDAE systems, we choose the
following methodology:

1. The use of the method of lines, where space and time discretizations are considered separately.
2. Spatial discretization: finite volume method because it conserves mass locally and preserves

the continuity of fluxes.
3. Time discretization: The Euler implicit scheme.
4. The use of a modified Newton method to deal with the present non-linearity.

However, various criteria are concerned by defining the reliable method:

• the precision of the results,
• the stability of the method,
• the computational cost,
• the facility of implementation.

In addition, a combination between all these criteria must take into account all the presented
difficulties (advection–diffusion heat transfer, phase change, interface tracking, coupling with water
steam flow, stiff system, high non-linearity, etc.)

Using the method of lines, the system of equations is discretized (25) basing on the finite volume
method. The diffusion–dispersion terms are discretized implicitly in time with a vertex-centered
finite volume discretization in space; hence, the size of time step is limited only by the desired
precision. Otherwise, with an implicit scheme, each time step leads to a global non-linear system
of equations, where heat diffusion with phase change and water steam flow are coupled. Therefore,
it is necessary to solve non-linear coupled equations.

On the other hand, for the convection–advection term in the energy equation of the system
(25), an upwind finite volume scheme in space and an explicit scheme in time [16] are used. The
upstream choice allows us to deal with all sizes of velocities. The explicit time discretization choice
requires the respect of CFL condition, but it has the advantage that it conserves the symmetry
of the linear system to be solved at each time step. However, the criterion on the choice of the
time step due to the explicit scheme for the advection term obliges us to use a small time step in
comparison with the required one for the diffusion–dispersion terms.

In our case, the proposed scheme as described above is computationally expensive; hence, we
use an implicit backward differentiation formula (BDF) method (as in [17]) that adapts the time
step in such a way so as to find the desired precision and to avoid instabilities.

6. SPATIAL DISCRETIZATION USING FINITE-VOLUME METHOD

The set of equations presented above are cast in the usual finite volume form for a finite domain:
each cell (or control volume) encloses exactly one data node at xi and its boundaries are always
computed as the middle of two consecutive nodes; hence, we obtain a good accuracy in the
gradient estimation. We denote by Ti the whole approximate solution of temperature and by Pi
the approximate solution of pressure, the location of any variables being indicated by subscripts.

To apply the finite-volume method, we first divide the problem domain into a finite-volume grid
or mesh (i.e. series of cells or blocks), in this case of equal width, �x , as shown in Figure 4.

For instance, the temperature at face i + 1
2 is Ti+1/2 =Ti fi+1/2 +Ti+1(1− fi+1/2) where fi+1/2 =

(2�xi+1/2 −�xi )/2�xi+1/2, �xi = xi+1/2 −xi−1/2, �xi+1/2 = xi+1 −xi , and �xi−1/2 = xi −xi−1.
A uniform mesh is used; hence �xi =�x∀i . The other variable that has to be approximated at
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Figure 4. Block-centered finite-volume discretization of a one-dimensional problem domain.

cell faces is the interface conductivity; the harmonic mean is used for composite materials for
its superior handling of abrupt property changes by recognizing that the primary interest is to
obtain a good representation of heat flux across interfaces rather than that of the conductivity [9]
(Patankar, 1980):

1

ke
= 1− fi+1/2

ki
+ fi+1/2

ki+1
(27)

6.1. Spatial discretization of (25) for the 1D case

At each time step, the 1D energy equation is numerically integrated over the control volume by
taking Figure 4 as reference:∫ xi+1/2

xi−1/2

(�C)e
�T

�t
dx +

∫ xi+1/2

xi−1/2

(�C)fVf
�T

�x
dx =

∫ xi+1/2

xi−1/2

�
�x

(
ke

�T

�x

)
dx, 2�i�N −1 (28)

For the transient term, it is assumed that the temperature of the control volume is represented by
that of the node:∫ xi+1/2

xi−1/2

(�C)e
�T

�t
dx = (�C)e,i

dTi

dt
�x = (�C)e(Ti )

dTi

dt
�x, 2�i�N −1 (29)

The diffusion term is approximated by using the piecewise-linear temperature profile. For instance:

∫ xi+1/2

xi−1/2

ke
�2T

�x2
dx =

[
ke|i+1/2

Ti+1 −Ti

�x
−ke|i−1/2

Ti −Ti−1

�x

]
, 2�i�N −1 (30)

For the convection term, the central weighting scheme tends to create artificial oscillation. Specif-
ically, the numerical solution oscillates around the true solution. Because of these problems, alter-
native spatial weighting schemes have been developed. A frequently used scheme is the upstream
(also called upwind) scheme ([18, 19]), which can be expressed as follows:

Ti+1/2 = (1−�)Ti +�Ti+1, 2�i�N −1

where

�=
{

0 if V >0

1 if V <0

We replace Vf by its value by using (6); hence, we obtain

∫ xi+1/2

xi−1/2

(�C) f Vf
�T

�x
dx = −

∫ xi+1/2

xi−1/2

K (�C)f

�f

�P

�x

�T

�x
dx

= − K (�C) f,i

� f,i�x
(Ti+1/2 −Ti−1/2)(Pi+1 − Pi−1), 2�i�N −1 (31)
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By substituting the approximated terms in (29), (30), (31) into (28) for a uniform mesh, the
discretized equation for a control volume is obtained as

dTi

dt
− K (�C) f,i

2� f,i (�C)e,i�x2
[(1−�)(Ti −Ti−1)+�(Ti+1 −Ti )](Pi+1 − Pi−1)

− ki+1 +ki

2(�C)e,i�x2
(Ti+1 −Ti )− ki +ki−1

2(�C)e,i�x2
(Ti −Ti−1)=0,2�i�N −1 (32)

To discretize the equation of water steam flow in the system (25), we use the integration by
parts; the discretization is given by the following formulation:

	(Ti )

Ti�

dPi

dt
+
[(

Pi

Ti�
−�l

)
d	(Ti )

dTi
− Pi

T 2
i �

	(Ti )

]
dTi

dt

+ K� f,i

�� f,i�x2

[
log

(
� f,i+1+� f,i

� f,i+1+� f,i

)
− log

(
� f,i

� f,i

)
−1

]
Pi+1

− K� f,i

�� f,i�x2

[
log

(
� f,i+1+� f,i

� f,i+1+� f,i

)
+ log

(
� f,i +� f,i−1

� f,i +� f,i−1

)
−2log

(
� f,i

� f,i

)
−2

]
Pi

+ K� f,i

�� f,i�x2

[
log

(
� f,i +� f,i−1

� f,i +� f,i−1

)
− log

(
� f,i

� f,i

)
−1

]
Pi−1 =0, 2�i�N −1 (33)

The initial and boundary conditions are written as follows:

T (xi ,0)=T0(xi )=T0,i , 1�i�N

T (xi , t)=T D(xi , t)=T D
i (t), i =1 or i = N

∇T (xi , t).=qN(xi , t)=qN
i (t), i =1 or i = N

P(xi ,0)= P0(xi )= P0,i , 1�i�N

P(xi , t)= PD(xi , t)= PD
i (t), i =1 or i = N

∇ P(xi , t).=sN(xi , t)=sN
i (t), i =1 or i = N

(34)

6.2. Spatial discretization for 3D axisymmetric problem

The 3D axisymmetric solution is based on the 3D Fourier’s equation expressed in cylindrical
coordinates in which it is assumed to be no dependence on the azimuthal coordinate. Then, the
axisymmetric energy equation can be written as follows:

(�C)e
�T

�t
+(�C)f

[
Vr

�T

�r
+Vz

�T

�z

]
= 1

r

�
�r

(
kr

�T

�r

)
+ �

�z

(
k
�T

�z

)
(35)

The water steam flow equation is written with the cylindrical coordinates as follows:

	(T )

�T

�P

�t
+
[(

P

T �
−�l

)
d	(T )

dT
− P

T 2�
	(T )

]
�T

�t

+ K�f

��f

(
1

�f

��f

�r
− 1

�f

��f

�r

)
�P

�r
+ K�f

��f

(
1

�f

��f

�z
− 1

�f

��f

�z

)
�P

�z

− K�f

��fr

�
�r

(
r
�P

�r

)
− K�f

��f

�2 P

�z2
=0 (36)

where all terms are as previously defined.
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Figure 5. Evaluation of the interface velocity components. At the interface between nodes (i, j) and
(i, j +1), Vr (i, j+1/2) is directly known from the flow model. In contrast, Vz(i, j+1/2) must be interpolated

from values at interfaces labeled 1, 2, 3 and 4.

The spatial discretization is performed by integrating the system of equations over the cells.
In fact, in this section we present the discretization of the convection–advection terms using an
upwind scheme (see Figure 5). The net advective flux into cell (i, j) in the r direction can be
approximated by the finite-volume method as

∫ i+1/2

i−1/2

∫ j+1/2

j−1/2
Vr

�T

�r
r dr dz = ri [Vr (i+1/2, j)((1−�1)Ti, j +�1Ti+1, j )

−Vr (i−1/2, j)((1−�1)Ti−1, j +�1Ti, j )]�z (37)

where 2�i�N −1 and 2� j�M −1.
The net advective flux into cell (i, j) in the z direction can be approximated by the finite-volume

method as∫ i+1/2

i−1/2

∫ j+1/2

j−1/2
Vz

�T

�z
r dr dz

= r2
i+1 +2ri (ri+1 −ri−1)−r2

i−1

8

×[Vz(i, j+1/2)((1−�2)Ti, j +�2Ti, j+1)−Vz(i, j−1/2)((1−�2)Ti, j−1 +�2Ti, j )] (38)

where 2�i�N −1 and 2� j�M −1.
The spatial weighting factors, �1 and �2, are equal to 0.5 for the central scheme, and 0 or 1 for

the upstream scheme depending on the direction of the flow vectors at the cell interfaces [18, 19].
The energy equation is discretized by using the upwind scheme for the convection–advection

terms and the vertex-centered scheme for the diffusion–dispersion terms:

dTi, j

dt
− 2(ki+1, j +ki, j )(ri+1 +ri )

(�C)e,i, j [r2
i+1 +2ri (ri+1 −ri−1)−r2

i−1]�r
(Ti+1, j −Ti, j )

+ 2(ki, j +ki−1, j )(ri +ri−1)

(�C)e,i, j [r2
i+1 +2ri (ri+1 −ri−1)−r2

i−1]�r
(Ti, j −Ti−1, j )
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− ki, j+1 +ki, j

2(�C)e,i, j�z2
(Ti, j+1 −Ti, j )+ ki, j +ki, j−1

2(�C)e,i, j�z2
(Ti, j −Ti, j−1)

+ 8(�C) f,i, j ri

(�C)e,i, j [r2
i+1 +2ri (ri+1 −ri−1)−r2

i−1]
[Vr (i+1/2, j)((1−�1)Ti, j +�1Ti+1, j )

−Vr (i−1/2, j)((1−�1)Ti−1, j +�1Ti, j )]

+ (�C) f,i, j

(�C)e,i, j�z
[Vz( j+1/2, j)((1−�2)Ti, j +�2Ti, j+1)−Vz( j−1/2, j)((1−�2)Ti, j−1 +�2Ti, j )]=0

(39)

where 2�i�N −1 and 2� j�M −1.
The water steam flow equation is also discretized and it could be written as follows:

	(Ti, j )

�Ti, j

dPi, j

dt
+
[(

Pi, j

Ti, j�
−�l

)
d	(Ti, j )

dT
− Pi, j

T 2
i, j�

	(Ti, j )

]
dTi, j

dt

+
K� fi, j

�� fi, j

8

(r2
i+1 +2riri+1 −3r2

i )�r

[
ri log

(
� fi+1, j

+� fi, j

� fi+1, j
+� fi, j

)
−ri log

(
� fi, j

� fi, j

)
− ri+1 −ri

2

]
Pi+1, j

+
K� fi, j

�� fi, j
�z2

[
log

(
� fi, j+1

+� fi, j

� fi, j+1
+� fi, j

)
− log

(
� fi, j

� fi, j

)
−1

]
Pi, j+1

+
K� fi, j

�� fi, j
�z2

[
log

(
� fi, j−1

+� fi, j

� fi, j−1
+� fi, j

)
− log

(
� fi, j

� fi, j

)
−1

]
Pi, j−1

−
K� fi, j

�� fi, j

8

(r2
i+1 +2riri+1 −3r2

i )�r

[
ri log

(
� fi+1, j

+� fi, j

� fi+1, j
+� fi, j

)
−ri log

(
� fi, j

� fi, j

)
− ri+1 −ri

2

]
Pi, j

−
K� fi, j

�� fi, j
�z2

[
log

(
� fi, j+1

+� fi, j

� fi, j+1
++� fi, j

)
log

(
� fi, j−1

+� fi, j

� fi, j−1
+� fi, j

)
−2log

(
� fi, j

� fi, j

)
−2

]
Pi, j =0 (40)

where 2�i�N −1 and 2� j�M −1.
The discretized initial and boundary conditions are given by:

T (ri , z j ,0) = T0(ri , z j )=T0,i, j , 1�i�N , 1� j�M

T (ri , z j , t) = T D(ri , z j , t)=T D
i, j (t), i ∈{1, N } and j ∈{1, M}

∇T (ri , z j , t). = qN(ri , z j , t)=qN
i, j (t), i ∈{1, N } and j ∈{1, M}

P(ri , z j ,0) = P0(ri , z j )= P0,i, j , 1�i�N , 1� j�M

P(ri , z j , t) = PD(ri , z j , t)= PD
i, j (t), i ∈{1, N } and j ∈{1, M},

∇ P(ri , z j , t) · = sN(ri , z j , t)=sN
i, j (t), i ∈{1, N } and j ∈{1, M},

(41)

6.3. The derived algebraic system

By using the method of lines, functions T and P are transformed into 2N vectors corresponding
to their values at each discretization point. The spatial derivatives are approximated using finite-
volume formula on three points where the best results for accuracy and computation time efficiency
were obtained.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 85:1390–1414
DOI: 10.1002/nme



NUMERICAL SIMULATION OF HEATING SATURATED POROUS MEDIA 1403

The spatial discretization of the energy equation presented above (39) is written under the form

S(T )
dT

dt
+ A(T )T + B(T, P)T =b (42)

where S(T ) is a non-singular diagonal matrix such as S(T )i = (�C)e(Ti ) =0∀i ∈ [1, N ]. The coef-
ficients of the matrices A(T ) and B(T, P) are obtained by the spatial discretization of the energy
equation (39). b is the second member vector. Equation (42) is an ordinary differential equation
that writes:

dT

dt
+S(T )−1 A(T )T +S(T )−1 B(T, P)T = S(T )−1b (43)

Also, the water steam flow equation writes after the spatial discretization:

D(T, P)
dT

dt
+C(T )

dP

dt
+ E(T )P =c (44)

where D(T, P) and C(T ) are two diagonal matrices and C(T ) is singular because C(T )i =0 when
	(Ti )=0, for Vi control volume; the equation is then an algebraic one. The coefficients of the
matrix E(T ) are obtained by the discretization of the flow problem (40) and c is the second member
vector.

Combining (43) and (44), we obtain the following algebraic system:

(
I 0

D(T, P) C(T )

)⎛⎜⎜⎝
dT

dt
dP

dt

⎞
⎟⎟⎠+

(
S(T )−1(A(T )+ B(T, P)) 0

0 E(T )

)(
T

P

)
=
(

S(T )−1b

c

)
(45)

Let Y = [T, P]T . By classical transformations, the system can be written in the general form

M
dY

dt
+ f (Y )=0 (46)

where

M =
(

I 0

D(T, P) C(T )

)
, f (Y )=

(
S(T )−1(A(T )+ B(T, P))T −S(T )−1b

E(T )P −c

)

We denote by J the jacobian matrix of f .

7. RESOLUTION OF THE DAE SYSTEM USING AN APPROPRIATE SOLVER

We start by considering the semi-discrete diffusion–convection model as a system of DAE of index
one and then we use the framework of DAE solvers. Indeed, it is sufficient to differentiate the
algebraic flow equations in order to get a system of ODE. Thus, the differentiation index of the
system is equal to one here.

In classical global approaches, an implicit Euler scheme is used to solve (46). This leads, at
each time step, to the non-linear system MY +�t f (Y )− MYn =0 and the Jacobian of this system
is the matrix M +�t J . This system can be solved by a Newton method. Newton iterations are
written as follows:

(M +�t J )(Y k+1 −Y k)=−(MY k +�t f (Y k)− MYn) (47)

7.1. Our global approach

We claim that an efficient way to solve our problem is to use a specific DAE solver with an implicit
time discretization. Our approach is a generalization of the classical global approach, which is a
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particular case with an implicit Euler scheme and a fixed time step. Thus, we keep the advantage
of the robustness of the method and compared with the fixed implicit scheme as Euler used in
the classical global approach; a big advantage of DAE solvers is their control of accuracy with a
variable order scheme. Moreover, these solvers provide a control of time step and the associated
control of Jacobian updates (ensuring convergence of Newton iterations for example). It is in
principle possible to implement these controls, but they are rather sophisticated in DAE solvers
and not so easy to reproduce.

In order to solve the DAE system (46), we adopt the following strategy. We use software
libraries and write modules clearly identified as diffusion and flow. We apply a DAE solver (in our
experiments, the DASSL DAE solver of SLATEC, to which we provide the temperature-dependent
mass matrix M , the function f , the Jacobian J and consistent initial conditions). We start by
calculating Y

′
0 from Y0 using a routine that we implemented in the DAE solver following the

algorithm used by MATLAB [20] to calculate the initial conditions at the time t = t0. Then the DAE
solver applies a time discretization scheme using the BDF method and solves at each time step a
system of non-linear equations using a modified Newton method [21, 22].

A drawback of our approach is the large size of the linear system; however, the matrix is sparse.
Thus, to improve efficiency we use a sparse linear solver (UMFPACK library) in the algorithm of
Newton-LU in DASSL.

The whole software uses the Fortran 90 MUESLI library (http://www.irisa.fr/sage/
edouard/canot/muesli/), which provides linear algebra facilities using a Matlab-like
syntax.

8. DEVELOPED SOFTWARE

Two programs have been developed using the numerical strategy presented above, both are devel-
oped in one, two and 3D-axisymmetric cases: the first one DIFFUSE-WC allows to simulate the
heat transfer in saturated porous media by neglecting the convective effect (phase change Without
Coupling with vapor flow); the second one is DIFFUSE-C that simulates the heat transfer in satu-
rated porous media taking into account the Coupling effect between the heat transfer with phase
change and the vapor flow in the ground.

9. NUMERICAL EXPERIMENTS

9.1. Performance and cost

In order to obtain good performances in our global approach, the Jacobian matrix is calculated
explicitly and coded by hand. Actually, we modified the DAE solver DASSL in such a way that it
could support sparse jacobian matrix using the compact sparse column format (CSC) respecting
the UMFPACK library requirement. The advantages of sparse matrices are both size and speed.
For example, a 100×100 matrix needs about 110 MB for dense storage and leads to 38 h for its
resolutions using a 2.1 GHz Dual Core-2 machine. On the other hand, the storage size falls to
15 MB (38 342 non-zero elements) and the CPU time falls to 87 s on the same machine. The speed
advantage of sparse matrix is illustrated in Figure 6.

9.2. Effect of the coupling with water steam flow

In order to show the effect of coupling between the heat transfer with phase change and the water
steam flow in the ground, we simulate the heat diffusion in a water saturated soil and we compare
the results in both cases (with and without coupling). We consider a water saturated clay soil
initially at 20◦C, the temperature of the supposed fire at the surface of the soil is 300◦C. The
curves illustrated in Figure 7 represent the temperature histories at 5 and 2.5 cm depths in the soil
for both cases (with and without coupling with water steam flow). Indeed, this figure shows the
retarding effect of steam convection; this is due to the fact that the vapor flowing in the ground
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Figure 6. CPU time versus the nodes number used in the simulation with sparse matrix (solid curve) and
dense matrix (dashed curve) structures. Used grids are: 10×10, 15×15, 20×20, 25×25 and 50×50.

3 h

5 h

without coupling

coupling with water-steam flow

Figure 7. Effects of coupling between heat diffusion with phase change and the water steam flow. Plain
curves (resp. dashed curves) represent the temperature histories at the depth 5 cm (resp. 2.5 cm). Taking

into account the steam convection introduces a delay in the heating that can reach few hours.

transports energy toward surface. Obviously, the delay is proportional to the heating duration but
appears only after the phase-change front. Similarly, the delay is negligible in the wet zone.

9.3. Numerical validations

After focusing on a theoretical and numerical point of view on different ways to solve our system
of PDAEs, the validation stage leads us to compare the code results with the experimental ones.
Actually, the model has been applied to the famous Stefan problem (melting problem) and has
been validated by comparing the numerical results with an existing analytical solution [23]. The
experiments deal with non-saturated porous media; hence, we are going to use � as the humidity
rate instead of viewing it as the ratio of void as represented in the model described in Section 2.
Hence, this will allow us to simulate heat transfer in non-saturated porous media.
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Figure 8. Physical properties used for simulations.

Figure 9. Simulation of the experiment of Laloy and Massard [24] using DIFFUSE-WC. The curves
show a comparison between numerical results and experimental data.

The physical properties for the fluid phase and the porous matrix used in the simulations are
shown in Figure 8. For all cases, we take L =2400 ·103 J/kg.

As a first validation example, the experiment of Laloy and Massard [24] may be used. This
experiment was done on a clay dry soil (�=0) from the archaeological site of Etiolles; the
temperature at the top of the soil was 700◦C. The simulation implied a 2D grid, with 50 points
along x and 50 points along depth, temperature interval �T =5◦C which is the optimal choice
to attempt the good accuracy and to avoid the fluctuations [25]. Figure 9 shows the comparison
between the simulation and the experiment. The variation of temperature at the depth 7.1 cm is
obviously due to some humidity in the soil, as has been also pointed out by Laloy and Massard
[24]. As may be observed results compare reasonably well, it may be concluded that, despite the
uncertainties coming from the experimental data, the simulations show similar trends and this is
an indication that reasonable agreement between replication experiments and simulations may be
expected.

The second example of validation is provided considering the water content in the soil. As the
aim of this work is to present an application of replication experiments and numerical modeling
in the archaeological research, specially the study of archaeological hearths used for cooking
and heating, the experiments have been done in Pincevent, near Paris, which was occupied by
the ancient hunther-gatherer groups 12.000 BP. The Magdalenian site of Pincevent is located in
the valley of the Seine river, approximately 72 km to the south of Paris near Montereau France.
The experiments must provide data to validate computational models developed to simulate the
heat transfer from the fire to the underlying soil. That is why we choose to realize a controlled
experiment using an electrical plate to heat the soil. Thus, the replication consists of heating the
surface of the soil using an electrical plate, taking continuous care of its intensity. Also, we put
many sensors in the soil at different depths and different positions under the plate (see Figure 10),
to measure the temperature distribution in the soil, and we place one sensor at the surface in
contact with the plate to measure the plate temperature (see Figure 11). Hence, we determine the
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Figure 10. Sensors are inserted in the soil.

Figure 11. Electrical plate is put on the soil.

Figure 12. Alteration at the surface.

different zones of alterations at the soil surface once the plate is driven away (see Figure 12),
and we excavate the hearth to determine the approximate temperature levels reached in the experi-
ments, to mark the changes in coloration due to the thermal alteration and to determine the sensors
positions (see Figure 13).

The comparison between numerical results and experimental ones is shown in Figure 14 where
the rate of humidity in the soil �=15% (an estimation that gives a reasonable concordance between
numerical and experimental curves) is used in the simulation with a grid of 50×50 nodes. The
results show a good agreement between numerical results and measured temperatures. However,
the differences between numerical results and experimental ones are due to the incertitude of the
thermocouples positions, also due to the approximated properties of the soil. Furthermore, the
plateaus shown in this figure are due to the water evaporation in the soil (phase-change problem).
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Figure 13. Excavation of the soil.
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Figure 14. Comparison between numerical results and experimental ones realized on the archaeological
hearths at the Pincevent site using an electrical plate. Dashed lines represent experimental data, whereas

others are the numerical results obtained by DIFFUSE-WC.

The fall in temperature in the dashed magenta curve is due to an error in measures or probably
because we moved the sensor during the experiment. The fact that the plateaus obtained by the
simulations are not so marked as in the experiments is due to the inherent choice of our model.
Figure 15 illustrates the temperature profile in the ground at the end of the experiment.

Other experiments have been done using a real fire as illustrated in Figures 16 and 17. After
several hours of continuous burning and keeping a nearly constant mass of fuel, fire was left
to extinguish. All along the experiment, temperatures of the fire, ambient conditions, tempera-
ture of the soil and wind velocity were recorded. The sampling time was approximately 5 min.
A schematic view of one of the experiments that shows the different positions of thermocouples
is illustrated in Figure 18 where the used humidity rate was �=10% (an estimation that gives
a reasonable concordance between numerical and experimental curves), and the grid node was
50×50. The comparison between the numerical results and the experimental ones is illustrated
in Figure 19, which shows the time evolution of the results as obtained from the code and the
experimental measurements. Hence, a reasonable concordance between the replication experiments
and the computer results is observed. However, the discrepancies shown between the numerical
results and the measured ones specially for thermocouple T 6 may be caused by the failure of the
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Figure 15. Temperature profile in the 3D axisymmetric case for the experiment with the
electrical plate. The black curve represents the phase-change interface position after 2 h of

lighting (isotherm at 100◦C). Domain size: 50×50cm.

Figure 16. Real fire used to heat the soil.

initialization for the boundary condition (we are taking the temperature at the center of the fire as
a uniform temperature for the uncontrolled bed, which is not the case in reality), or may be due
to the uncertainty properties of the porous medium. Moreover, there is the question of weather
(fire is sensitive to the wind) that may remain unanswered since the various properties of the
experimental conditions are not fully known. It should be pointed out that the temperature history
curves presented herein appear quite similar to those reported elsewhere in the literature.

The plateaus at the phase-change temperature observed in Figure 19 are due to the phase-change
phenomenon. The water vapor produced at the discontinuous moisture front migrates from the
front toward the dry side. Figure 20 shows the temperature profile in the ground. The convective
flow is shown by the measured and computed pressure distribution, illustrated in Figure 21, with
the velocity in the direction of the negative pressure gradient (see Figure 22). We can see that
the highest pressure reached is at the interface level where the evaporation process happens.
In this experiment, we are dealing with a medium of small permeability (K =10−12 m2), and so
the vapor finds more difficulties to escape from the ground; thus, there is significant variation of
the pressure in the soil.
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Figure 17. Alteration of the soil after the experiment.

Figure 18. Schematic view of the experiment with the different positions of thermocouples.
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Figure 19. Comparison between numerical results obtained by DIFFUSE-C and experimental ones
realized on the archaeological hearths at the Pincevent site. Real fire has been used.
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Figure 20. Temperature profile in the ground for the real fire Pincevent experiment. The
black curve represents the phase-change interface position (isotherm 100◦C) at the end of

the lighting. Domain size: 50×50cm.

Figure 21. Pressure distributions in the ground. It is due to the gas created at the
interface of phase change. Domain size: 50×50cm.

9.4. Radiation effect

Ferreri and March [26–29] have developed a numerical model in 3D-axisymmetric case called
Pince-eu, which simulates the heat transfer in saturated porous media. Their code takes into
account the phase-change phenomenon and the radiation effect at the surface of the soil, but it
neglects the convection effects due to the coupling with the water steam flow. Therefore, in order to
study the radiation effect, it seems necessary to compare our model DIFFUSE-WC withPince-eu.
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Figure 22. Water steam flow pattern. Domain size: 50×50 cm. Max. velocity: 2.6×10−6 m/s.

In fact, Pince-eu solves the same physical problem as DIFFUSE-WC and in addition it includes
the radiation phenomenon that allows to simulate the heat transfer in a bowl occupation, which is
not the case in our model.

In fact, the numerical method used in Pince-eu is based on the discretization of the Fourier
equation using the finite difference method, the coordinate transformations and the apparent capacity
method given by Bonacina and Comini [11]. This software is coded in Fortran 77.

To compare the two models (DIFFUSE-WC and Pince-eu), we simulate the same experience
realized at the archaeological site of Pincevent; it is an experience of real fire lighted at the surface
of the soil. We used a finite domain of 1m×1m with a circular fire at the surface with diameter
d =30cm. The variable measured temperature at the center of the fire is used as a boundary
condition at the surface (we suppose that the temperature at the surface is uniform). The comparison
is illustrated in Figure 23 and it shows that the two models reproduce the same behavior. On the
other hand, we can see the difference between the results of the two models when cooling starts;
this is due to the radiation effect and this is one of the limitations of our model. Otherwise, the
big advantage of our code is that it couples the heat diffusion with the water steam flow that has
a pronounced effect on the heating curves when dealing with long time fires. Also, the numerical
method proposed to solve our model is adapted to the use of unstructured meshes, which is not the
case with the method of orthogonal boundary fitted used in Pince-eu; this limits the modelization
of hearths with complex geometries. For the bowl occupations, the interior boundaries are heated
by radiation; hence, it seems interesting to include the radiation effect into our model to modelize
such occupations.

10. CONCLUSION

In this paper, we have developed a numerical model that simulates heat diffusion in saturated
porous media coupled with the water steam flow problem (due to the creation of vapor when it
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Figure 23. Comparison between our model of heat diffusion with phase change
without coupling and Pince-eu code.

occurs). We propose a global method based on the AHC method, in order to avoid the tracking
of the phase-change interface, and on the use of a DAE solver devoted to handle the coupling
between the energy and the water steam flow equations. We use a method of lines to discretize
separately in space and time. Actually, due to the strong coupling, this requires to control the time
step and the convergence of the Newton iterations. We advocate the use of DAE solvers, which
are very efficient in this control, at the price of a larger non-linear system but with the benefit of
a better stability.

Numerical results show interesting features concerning the retarding effect of the coupling
between heat diffusion and water steam flow; this is due to the convection phenomenon. Obviously,
the retarding effect of the water–steam convection depends on the position of the considered point.
It occurs mainly in the dry zone, but it is not pronounced in the wet zone. Moreover, this retarding
effect occurs more and more later as the position is more and more deeper in the soil. Therefore,
as we are looking for the minimal duration of burning based on the alterations of the soil (colors
change in the soil corresponding to the temperature T =300◦C when dealing with clay–limon
soil), the effect of the convection term is really important and could change fundamentally the
interpretation of the results.

Finally, we plan to extend the proposed algorithm to the real 3D case and wish to take into
account the radiation effect that is essential to simulate bowl occupations where the edges are
heated by radiation also and not only by conduction.
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